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Abstract. Two models of candidates for hereditary symmetry operators are proposed and
thus many nonlinear systems of evolution equations possessing infinitely many commuting
symmetries may be generated. Some concrete structures of hereditary symmetry operators are
carefully analysed on the basis of the resulting general conditions and several corresponding
nonlinear systems are explicitly given as illustrative examples.

1. Introduction

An application of Lax pairs is a well known way to construct nonlinear integrable systems.
Most integrable systems, such as the Korteweg—de Vries (KdV), the nonlinebdbuodper
(NLS), the Kadomtsev—Petviashvili (KP) and the Davey-Stewartson equations, can be
derived through appropriate Lax pairs (see, for example, [1]). There are also some other
ways to construct nonlinear integrable systems, for example by bi-Hamiltonian formulation
[2, 3] and by hereditary symmetry operators [4, 5] etc.

Of course, integrable systems generated by different methods have different integrable
properties. In general, the method of Lax pairs produces S-integrable systems and
the methods of bi-Hamiltonian formulation and hereditary symmetry operators produce
nonlinear systems possessing infinitely many symmetries and/or infinitely many conserved
densities. There has already been a lot of investigation on the method of Lax pairs (see,
for example, [6]) and the method of bi-Hamiltonian formulation (see, for example, [7-9]).
So far, however, there has been little discussion about the method of hereditary symmetry
operators.

This paper will focus on the construction of hereditary symmetry operators and their
related nonlinear systems. The resulting nonlinear systems have infinitely many commuting
symmetries. Some such systems may be found in [10-13]. However, we can easily construct
as many such systems as we want. To achieve our aim we first discuss the structure
of hereditary symmetry operators by examining two models of candidates for hereditary
symmetry operators, and then exhibit some concrete examples of hereditary symmetry
operators including relevant nonlinear systems.

Let u be a dependent variable = (u*, ..., u%)", whereu’, 1 < i < ¢, depend on
the spatial variablec and on the temporal variable We useA? to denote the space of
g-dimensional column vector functions dependingudtself and its derivatives with respect
to the spatial variable (possibly a vector). Sometimes we write this spacedéé:) in
order to show the dependent variakle
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Definition 1.1. Let K, S € A7 and®(u) : A7 — A?. Then the Gateaux derivatives &f
and ® with respect ta: at the directionS are defined as

K'W[S] = 38_8 Ku+¢S) D' (w)[S] = 88_8 du+eS). (1.1)
=0 £=0

We recall that the commutator between two vector functi&ns € A7 is given as
[K.S] = K'[S] — S W)[K]. 1.2)
The spaced? constitutes a Lie algebra under the bilinear operation (1.2).
Definition 1.2. A linear operatod () : A7 — A7 is called a hereditary symmetry operator
[14] if it satisfies the following condition
@' ()[PK]S — @ ()[PS]K — P{D'(u)[K]S — @' (u)[S]K} =0 (1.3)
for arbitrary vector functions, S € A9.

An equivalent definition of a hereditary symmetry operatow) : A7 — A7 is that
besides the linearity ofb(u), its Nijenhuis torsion [15,16]N+(K, S) vanishes for all
K,Se Al ie.

No(K,S) :=[®K, ®S] — ®[PK, S] — ®[K, ®S] + ®I[K, S]

= (Los®)K — P(LsP)K =0 (1.4
where a Lie derivativd. x ® of ®(u) : A7 — A7 with respect toK € A7 is given by
Lx® = ®'[K] - [K', D] (1.5)
or more precisely,
(Lx®)S = &' (u)[K]S — K'(u)[®S] + K’ (u)[S] S e A (1.6)

If a hereditary symmetry operatdr(u) has a zero Lie derivativé x & = 0 with respect
to K € A?, then we have (e.g., see [14,17])

[®"K,®"K] =0 m,n > 0. a.7)
Therefore each system of evolution equations among the hierarchy
u, = ®"K n>0 (1.8)

has infinitely many commuting symmetridg’ K, m > 0. Such a vector fiel& € A7 may
often be chosen as,, which will be seen later on.

The next section will examine two models of candidates for hereditary symmetry
operators. It will then go on to exhibit concrete examples of the general cases established in
section 3. Finally, section 4 will provide us with a summary and some concluding remarks.

2. Extending hereditary symmetry operators

Let us assume that
ukz(u,%,...,uZ)T 1<k<N
u =(MI,...,MI,)T=(u%,...,u({,...,ullv,...,u(,’v)-r.
Throughout this paper, we need the following condition
@ (i) = @) (ur) 1<k I<N (2.1)
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for a set of operator®d; (uy) : A?(uy) — A?(ux), 1 < k < N. This reflects a kind of
linearity property of the operators with respect to the dependent variaples< k£ < N.
We point out that such sets of operat@rs(u;) do exist. Some examples will be given in
the next section.

Let us consider the first form of candidates for hereditary symmetry operators

N
D) = (Zcfjobk(uk)) (2.2)
k=1

NxN
where {c{‘j| i,j,k=12,...,N}is a set of given constants. Apparently we can define a
linear operator
D) ATw) x - x ATu) - AT(u) x - x Al (u)
N N

where a vector function afd?(u) depends on all the dependent variahlgs. .., uy, not
just certain dependent variahig.

Theorem 2.1. (i) If all @y (uy) @ AY(uy) — A?(uy), 1<k < N, are hereditary symmetry
operators satisfying the linearity condition (2.1) and the conste(.?JJISL < i, j,k <N,
satisfy the following coupled condition

N N N

k1o I n _ kI .
E icijckn = E :Cikckj = E icinckj 1<ijln<N (2.3)
k=1 k=1 k=1

then the operato® (x) : A¥9(u) — AN9(u) defined by (2.2) is a hereditary symmetry
operator.

(i) If L, & =0 forall &y(ux), 1<k <N, thenL, & =0.
Proof. We only need to prove thab (1) satisfies the hereditary condition (1.3), because the
proof of the rest of the requirements is obvious. Noting thatu) is composed of column
vector functions, we may assume f&fr, S € AV (u) that
K=(Kj, ...,KDT" S=(S,....,s)" K, Si € A(u) 1<i<N

and we often need to writeX); = X;, 1 <i < N, when a vector functioX € AN (u)
itself is complicated. In this way we have

N
K = (®K)[.....(@K))T  (PK); =Y ¢, ®i(u)K,  1<i<N

I,n=1
N N
@' (u)[PK] = <ZC§}©L(W)[Z C§m©z(uz)KnD
k=1 [,n=1 NxN
N
@ W[OKIS) = Y el Quol® K]S, 1<i<N
j.koln=1

(®Q'W[K]S);

N
D il @), (un)[K,)S; 1<i<N.
J.k,,n=1

Therefore by the linearity condition (2.1), we can obtain
(@' W[PK]S — &' W) [PS]K — &{P'W)[K]S — ' )[S]KD);
N

= > G L) (@) ®iu) K,]S; — @)@ S1K,
Jsl,n=1

— @ (u){ @) (u)[K,]S; — ©;(up[S;1K,}} 1<i, j,nI<N (2.4)
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where f (i, j, [, n) is given by

N N N N

P . k 1 I n k o ]
fG. j.Ln) =) cic = Q) Culrj = E CinCrj = E CikCin 1<i,j.l,n<N.
k=1 k=1 k=1 k=1

This is well defined owing to (2.3). Actually the last equality above may be obtained by
changing two indiceg, j in the first equality of (2.3). Each term in the right-hand side of
(2.4) is equal to zero because of the hereditary propert®,6f;), 1 <! < N, and thus

@ (u) satisfies the hereditary condition (1.3). The proof is completed. |

Let us now consider the second form of candidates for hereditary symmetry operators

0 -+ 0 @1(uy)
E, - 0 ®up)
D(u) = , . . (2.5)
0 -+ E; Py(uy)
where the matrixg, is the unit matrix of ordeg, i.e. E, = diag(l, ..., 1).
——

q

Theorem 2.2. (i) If the operators®; (uy) : A?(uy) — A%(ur), 1 < k < N, satisfy the
linearity condition (2.1), then the operatdr(u) : AV9(u) — AY9(u) defined by (2.5) is
hereditary if and only if the operatoB, (u;), 1 < k < N, are all hereditary.

(i) The conditionL, ® = 0 holds if and only if all the conditiong,, &, =0, 1 <
k < N, hold.

Proof. Similarly noting thatA? () is composed of column vector functions, we may make
the same assumption fd¢, S € AV (u)

K=(K{, ....,K)" S=(S{,....5)" K;, S; € Al(u) 1<i

N

N.

Then we can obtain

r @) (u1)[P1KN] SN
DL(u2)[K1+ P2Ky]Sy
' (u)[PK]S = ,

L &\ (un)[Kn-1+ Py Kn]Sy
B 1P (un)[Kn]Sy

@) (u)[K1]Sy + 2@ (upn)[Kn] S
' W)[K]S = ,

L @y _1(un—1)[Kn-1]Sy + Py Py (un)[Kn]Sn

[0 o 0 @(uy)[us] — (991 — P10) :|

0 -+ 0 @yun)|un,]—(0Py — Py3)

Based upon the above three equalities and the linearity condition (2.1), we can easily obtain
the required results. So the proof is finished. O
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3. Concrete examples

Basic scalar hereditary symmetry operators satisfying the linearity condition (2.1) can be
one of the following two sets

@; (u;) = a; + Bid% + y(0u; 0" + uy) 1<i<N (3.1)
Qi (i) = 0 + ¥ (uixd "+ uy) 1<i<N (3.2)

whered = d/dx andew;, ;, y are arbitrary constants. Matrix hereditary symmetry operators
satisfying the linearity condition (2.1) may be chosen and some of these examples have been
given in [18-21]. Later on we will see two special examples while discussing extension
problems. On the other hand, such sets of hereditary symmetry operators may be generated
directly from the above operators by theorems 2.1 and 2.2 in the previous section or by
perturbation around solutions as in [22,23]. Note that all the above hereditary symmetry
operators satisfyL,, ®; = 0, 1 < i < N. Therefore among the corresponding hierarchy

u, = ®"u,, n > 0, each system of evolution equations has infinitely many commuting
symmetries, because we have™u,, ®"u,] = 0 if ®(u) is hereditary.

3.1. Hereditary symmetry operators of the first form

Example 1. Let us choose
k= flgletk)  1<ij k<N (3.3)

where f, ¢ may be arbitrary functions. The set of consta(rts} satisfies the coupled
condition (2.3) and thus the corresponding operabgr) defined by (2.2) is hereditary

if each ®,(u;) is hereditary and the linearity condition (2.1) holds. In particular, upon
choosingf (1) = g(1) =1, g(2) = 2, f(2) = —3, we have the following special hereditary
symmetry operator

D) = D1(u1) + 2P (u2) 201 (u1) + 4P (u2)
T =3P1(ur) — 6Po(u2) —6P1(u1) — 12P5(up)

where we require tha®,(u1) and ®,(up) are hereditary and thab) (1) = ®5(u2). The
second row of this operator is obtained by multiplying the first row by a const&nand
so the operator is trivial. As the result of the same fact, all hereditary symmetry operators
resulted from (3.3) are trivial.

Let us now choose

ok =8y =i+ j— p (modN) (3.4)

where 1< p < N is fixed andsy; denotes the Kronecker symbol again. The corresponding
operator defined by (2.2) becomes

Do, (Uo—p) D1 ,(u1—p) o Oy_praun_py1)
@3,p(u3,p) @2,1,(142,],) s CDprﬁLZ(MprJrZ)
) = ‘ . ‘ . (3.5)
On_pr1Un_pr1) Pyn_proUn_pi2) -+ Pon_p(uan_p)

where we need to usé;(u;) = ®;(u;) if i = j (modN) to determine the operators
involved, for example®,_, (us—,) = Py (uy) Whenp = 2.



7284 W-X Ma

It can be proved that the coupled condition (2.3) requikes= 2. Thus, among the
above operators, we have only two candidates of hereditary symmetry operators satisfying
(2.3)

| Pa(ur)  Pa(uz) [ ®a(uz) ®1(ur) T
D (u) = [d)z(uz) <D1(u1):| O(u) = |:q)1(’41) <D2(u2):| U= [uz] . (3.6)

Note that here:; andu, may be vector functions. These two operators are symmetric and
thus they can be diagonalizable. Actually they can be diagonalized by a linear transformation
of the potentialar; andu,. Therefore, they are also trivial. What we show above is that
there is no interesting hereditary symmetry operator among the operators defined by (3.5).

Example 2. Let us choose

ok =8 l=i—j+p (modN) (3.7)

where 1< p < N is also fixed andy; still denotes the Kronecker symbol. In this case, we
have

N N N . . _
S =i =X b =g e
k=1 =1 = 0 otherwise

which implies that the coupled condition (2.3) automatically holds. Thus we have a set of
candidates for hereditary symmetry operators

du) =
D, (up) D,_1(up-1) e ®i(u1) Py(uy) e Dpp1(pr1)T]
Dpa(pr)  Ppup) o D) '
; ' ' ' ' Dy (uy)
Dy (uy) D1 (u1)
P (uz) '
E Dy (uy) pupy)  Dpoa(up 1)
LD, _1(up-1) DP1(u1) Py(un) Dpr1(upin) Dpup)
(3.8)
where we also need to usk; (u;) = ®;(u;) if i = j (modN) to determine the operators
involved. In particular, we can obtain a candidate of hereditary symmetry operators
D1(u1) Dy(uy) ce Do(ug)
() = q>2(_”2) @1(.,,1) h ‘ . (3.9)
: : Dy (uy)
Oy(uy) Oy-alun-1) -+ P1(u1)

The N = 3 case of the above operator with the scalar operators
®; (ur) = B;9% + (Qu; 0" + uy) 1<i<3

gives a hierarchy of nonlinear systems = (®(u))"u,, n > 1, among which the first
nonlinear system reads as

U1y = PrUterr + BaUoerr + Polhzexx + Uit + 3(uaus)y
Upr = Polltyxy + BrUhoexx + PBaUzexx + usttzc + 3(Uilto)x (3.10)
Uz = /33ulxxx + IBZMZYXX + lglu?xxxx + 3”2”2): + 3(”1”3).)(-
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This system is not symmetric with respecttQ u,, u3, and generally it cannot be separated
under a real linear transformation of the potentialsu,, uz. One of the reasons is that the

matrix
Br B3 B2
A= |:,32 B1 ,33}
Bs B2 B
cannot always be diagonalized for all valuesgef 82, B3. Whenu; = uy, = ug, the system

is reduced to the KdV equation up to a constant coefficient. It also provides an example of
the general systems discussed byr&gs and Karasu [24].

Example 3. We choose
Cf‘{j =8i_ji—p (3.11)

wherep is an integer and,; denotes the Kronecker symbol. For two cases-ef\2< p < 1
andN < p < 2N — 1, the coupled condition (2.3) can be satisfied, because we have

N N N . .

S =Yt = Y=o e

k=1 k=1 k=1 '

We should note in proving the above equality that we have

1<i—j+p=n+l—-p<N 1<i—-Il+p=n+j—p<N
1<i—-n+p=j+Il—-p<N

wheni — j —n — [ 4+ 2p = 0. However, for the case of ¥ p < N, upon choosing
i=n=N,j=p+1,1=p—1, we have

N N

k1o I n _
E CiiChn = 1 E CikCrj = 0
k=1 k=1

and thus the coupled condition (2.3) cannot be satisfied.
Note that wherp < 2— N or p > 2N — 1, the resulting operators are all zero operators.
Therefore, we can obtain only two sets of candidates for hereditary symmetry operators

r b, (up) 0 T
oy = | Pl 2_N<p<l (312

-~ q)p+Nfl(u17+Nfl) T (Derl(uerl) q)p (up) -

B (Dp(up) chfl(upfl) s (Dprle(uprJrl) 7
D) = N B 5 N < p<2N -1 (3.13)

. (Dpfl(upfl)

L © @, (u,) i
where we accept thab;(u;) =0if i <0ori > N + 1. These two sets of operators can
be linked by a transformatiotuy, uz, ..., uyx) < (uy, uy—1, ..., u1).

When we take
D, (u;) = ;02 4 2(0u; 071 + u;) 1<i<N

whereq;, 1 < i < N, are arbitrary constants, as basic hereditary symmetry operators, we
obtain N hierarchies of nonlinear systems of KdV type starting from the operators in (3.12).
A special choice withw; = 1, o; =0, 2 < i < N, andp = 1 leads to the perturbation
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systems of the KdV equation generated from perturbation around solutions in [22]. Another
special choice withv = 2 andp = 1 leads to the following system

Ul = Q1licex + Buqu
1t 141x 1%1x (314)
Uy = OU1xy + O1l2cey + 6(U1U2) .
We can also choose a pair of hereditary symmetry operators in [25]
1 9-1 1 2
_ up, 07"+ 2u3 ui+ad
Cr(u) = |:uic8_l+u%—a8 0
1 9-1 1 2
_ uz 07"+ 2u; us + Bo
Do(up) = |:u%x31+u§ — 80 0 (3.15)

as basic hereditary symmetry operators with= (u1,u2)" andu, = (u3,u3)" and two
arbitrary constants ands. Then we can obtain axd4 matrix hereditary symmetry operator

U1, 01+ 2uq Uy + ad 0 0 U1
q)(u)z u2x8_1+M2—aa 0 O O U= u
Uz, 01 + 2u3 us+ B0 U1, 01+ 2uq Uy + ad us

uad r +us — B3 0 Uz 0 4+ up — d 0 Uy
(3.16)

with two arbitrary constantsx and 8. Note that we rename the dependent variables
ul, ui, ul, u5 asu, uy, us, ug, respectively. The first nonlinear system in the hierarchy
u; = (®u))"u,, n > 1, is the following

U1 = oUpex + Uiy + Usloy

Uz = —OU1cy + (U1U2)x

3.17
Uz = Py + olayy + 3(Uuz)y + (Uous), ( )
Uy = _,Bulxx — U3 + (ulu4)x + (u2u3)x~

This is of different type from that discussed in [26] because of the terms of the second
derivatives of potentials.

3.2. Hereditary symmetry operators of the second form

Example 4. Let ®(u) be defined by (2.5). The first non-trivial candidate of integrable
systems among the hierarchy = (® (u))"u,, n > 0, reads as

u1 D1 (uy)uny
Uz ui, + Pa(uz)uy

w=| . | = , ol (3.18)
uy J; Uy—1x + OnUn)unx

If we choose the basic scalar hereditary symmetry operators as follows
() = —30°+ (Qud " +u;)  L<i<N
then the corresponding hereditary symmetry operétar) determined by (2.5) becomes

0 -+ 0 —302+4 Qu1d~ 4 uy)
1 -+ 0 —332+4 (Bup0™t +up)

Qu) = . : (3.19)
0 -+ 1 —3232+4 Quyd~t+uy)

This generates the coupled KdV systems [18, 27].
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If we choose the basic scalar hereditary symmetry operators defined by (3.2), then
the corresponding hereditary symmetry operator contains all hereditary symmetry operators
appearing in [19-21]. A special example gives a hereditary symmetry operator

0 0 0 0 apd+undt4u U
1 0 0 0O w0+ uzxa_l “+ us Uz
Pu)=[0 1 0 0 w30+ uzd t+us u= 1\ us (3.20)
0 0 1 0 od~+uadt+uy Ug
0 O 0 1 w50+ us, 91 + us Us

and a nonlinear system

U1 = Qs + (U1Us),

U = U1c + 0Use, + (Ualhs)y

Uz = Up; + ot3Use, + (Usls)y (3.21)
Ugy = U3y + Q4ltsyy + (UaUs)y

Us; = Ugy + otsUsey + 2UsUs,

with five arbitrary constanta;, 1 <i < 5.

Example 5. Let us choose another pair ofx22 matrix operators

0 ,318+y(uix8_1+u%)] 0 ,338+y(u%)(8_1+u%):|

D1(u1) = _ _
1(u1) |:ot1 B2d +y w3 971 +ul) ar Pad +y @33t + ul)

Do (u2) = [

as basic hereditary symmetry operators with= (u}, u3)T andu, = (u3, u3)T. Then by
theorem 2.2, we obtain a4 4 matrix hereditary symmetry operator

0 0 O 518+y(u38_1+u1) Uy

10 0 a1 P20 +)/(u2x3_1+u2) | uz
=1 0 0 PB3d+yusd*+us) “T | us (3.22)

0 1 ar PBad+y(uad ™+ us) Usg

wherew;, f;, y are arbitrary constants and we rename the dependent varigbles u3, u3
asus, up, us, ug, respectively. The first nonlinear system from the corresponding hierarchy
is the following

uy = ,Blu4xx + V(ulu4)x

Uy = Uz + Bollgy, + ¥ (UoUa)y (3.23)
Uz = U1y + Battaxy + vy (usug)x '
Ug = Uy + Uz, + Baltaxe + 2y ususy.

This system is reduced to the Burgers equation up to a constant coefficient, if we make a
special choice

up=up=a1=02=p1=p=0 Uz = Uy Bz = Ba.
Let us next choose the following threex22 matrix operators in [25]

2.4 15-1 1
uf + o uf 07t 4 2u] } 1<i<3 (3.24)

D, (u;) = [ 0 W29t 4 u2 — a0

as basic hereditary symmetry operators with= (u?, u?)7, 1 < i < 3. Itis quite interesting

1>

to observe that the above hereditary symmetry operators can be obtained by interchanging
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two columns of the hereditary symmetry operators in (3.15). Through theorem 2.2, we
obtain a 6x 6 matrix hereditary symmetry operator

0 0 0 O up+a1d U1 d L+ 2uq uy

0 00O 0 U d 4 up — a1d Us

_ 1 0 0 0 us+and u3x8_1+2u3 _ | us
*W=191 0 0 0 Ugd 1 4 ug — azd L (3.25)

0 0 1 O ug+aszd u5x871+2u5 Us

0 0 0 1 0 uexa_l—i-ue—aga Ug

wherew;, 1 < i < 3, are arbitrary constants and we rename the dependent variables
ul, u?, ul, u3, ul, u3 asua, uy, us, ug, us, ug, respectively. The first nonlinear system of the

corresponding hierarchy reads as

U1 = Qs + upusy + (U1ue)y + Uiltey

Uy = —01Ugyy + (Ualt)y

Uz = Uly + QoUsyy + Ugus, + (Uslte)y + U3ley
Ug = Uy — OpUgxx + (Ualle)x

Us; = Uz, + oguts,, + 2(Usite)y

Ug = Ugy — Ol3Upxy + 2llelhpy.

(3.26)

This is another different example from the systems discussed by Svinolupov in [26].

4. Conclusions and remarks

Two models of candidates for hereditary symmetry operators are analysed and some possible
basic hereditary symmetry operators are also given. Therefore, according to the conditions
in theorems 2.1 and 2.2, many concrete nonlinear systems of evolution equations possessing
infinitely many symmetries may be generated from various hereditary symmetry operators
having a zero Lie derivative with respect to.. Some particular cases are carefully
discussed, along with several corresponding nonlinear systems.

Our results provide a direct way to extend hereditary symmetry operators. New resulting
hereditary symmetry operators, for example the hereditary symmetry operators shown in
(3.16), (3.22) and (3.25), can also be chosen as basic ones satisfying the linearity condition
(2.1), and then more complicated hereditary symmetry operators can be generated by our
idea of construction. Note that may be a vector and no condition has been imposed on
the spatial dimension while examining two forms of candidates for hereditary symmetry
operators. Therefore, the idea is also valid for the case of high spatial dimensions, which
will be reported elsewhere. On the other hand, we hope that there will appear more concrete
examples satisfying (2.3) and more concrete models of hereditary symmetry operators.

It is worth pointing out that the coupled condition (2.3) is only sufficient but not
necessary. We may have counterexamples. For example, a counterexample can be the
following

_ P1(u1) 0 ="
P = |:q92(u2) +a®a(ug) <I>l(”l)] e I:uz:| o

D, (u;) = 8:10% 4+ 2(0u; 071 + u;) i=12 (4.2)

with an arbitrary non-zero constamt In fact, for this operato (x) we have
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If we choosei =1 =n=1, j = 2, then we obtain

2 2
k1l _ I n
E CiiChn = 0 E CikCrj = 4a
k=1 k=1

and thus the first equality in the coupled condition (2.3) is not satisfied. But the operator
@ (u) defined by (4.1) and (4.2) is hereditary, which may be directly proved.
The coupled condition (2.3) may also be viewed as a condition on a finite-dimensional

algebra with a basigy, e, ..., ey and an operation
N
e,-*e,-:Zcf‘jek 1<i,j<N. (4.3)
k=1

However, we do not yet know much about such algebras.
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