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Abstract. Two models of candidates for hereditary symmetry operators are proposed and
thus many nonlinear systems of evolution equations possessing infinitely many commuting
symmetries may be generated. Some concrete structures of hereditary symmetry operators are
carefully analysed on the basis of the resulting general conditions and several corresponding
nonlinear systems are explicitly given as illustrative examples.

1. Introduction

An application of Lax pairs is a well known way to construct nonlinear integrable systems.
Most integrable systems, such as the Korteweg–de Vries (KdV), the nonliner Schrödinger
(NLS), the Kadomtsev–Petviashvili (KP) and the Davey–Stewartson equations, can be
derived through appropriate Lax pairs (see, for example, [1]). There are also some other
ways to construct nonlinear integrable systems, for example by bi-Hamiltonian formulation
[2, 3] and by hereditary symmetry operators [4, 5] etc.

Of course, integrable systems generated by different methods have different integrable
properties. In general, the method of Lax pairs produces S-integrable systems and
the methods of bi-Hamiltonian formulation and hereditary symmetry operators produce
nonlinear systems possessing infinitely many symmetries and/or infinitely many conserved
densities. There has already been a lot of investigation on the method of Lax pairs (see,
for example, [6]) and the method of bi-Hamiltonian formulation (see, for example, [7–9]).
So far, however, there has been little discussion about the method of hereditary symmetry
operators.

This paper will focus on the construction of hereditary symmetry operators and their
related nonlinear systems. The resulting nonlinear systems have infinitely many commuting
symmetries. Some such systems may be found in [10–13]. However, we can easily construct
as many such systems as we want. To achieve our aim we first discuss the structure
of hereditary symmetry operators by examining two models of candidates for hereditary
symmetry operators, and then exhibit some concrete examples of hereditary symmetry
operators including relevant nonlinear systems.

Let u be a dependent variableu = (u1, . . . , uq)T, whereui, 1 6 i 6 q, depend on
the spatial variablex and on the temporal variablet . We useAq to denote the space of
q-dimensional column vector functions depending onu itself and its derivatives with respect
to the spatial variablex (possibly a vector). Sometimes we write this space asAq(u) in
order to show the dependent variableu.

† E-mail address: mawx@cityu.edu.hk
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Definition 1.1. Let K, S ∈ Aq and8(u) : Aq → Aq . Then the Gateaux derivatives ofK
and8 with respect tou at the directionS are defined as

K ′(u)[S] = ∂

∂ε

∣∣∣∣
ε=0

K(u+ εS) 8′(u)[S] = ∂

∂ε

∣∣∣∣
ε=0

8(u+ εS). (1.1)

We recall that the commutator between two vector functionsK, S ∈ Aq is given as

[K, S] = K ′(u)[S] − S ′(u)[K]. (1.2)

The spaceAq constitutes a Lie algebra under the bilinear operation (1.2).

Definition 1.2. A linear operator8(u) : Aq → Aq is called a hereditary symmetry operator
[14] if it satisfies the following condition

8′(u)[8K]S −8′(u)[8S]K −8{8′(u)[K]S −8′(u)[S]K} = 0 (1.3)

for arbitrary vector functionsK, S ∈ Aq .
An equivalent definition of a hereditary symmetry operator8(u) : Aq → Aq is that

besides the linearity of8(u), its Nijenhuis torsion [15, 16]N8(K, S) vanishes for all
K, S ∈ Aq , i.e.

N8(K, S) := [8K,8S] −8[8K, S] −8[K,8S] +82[K, S]

= (L8S8)K −8(LS8)K = 0 (1.4)

where a Lie derivativeLK8 of 8(u) : Aq → Aq with respect toK ∈ Aq is given by

LK8 = 8′[K] − [K ′,8] (1.5)

or more precisely,

(LK8)S = 8′(u)[K]S −K ′(u)[8S] +8K ′(u)[S] S ∈ Aq . (1.6)

If a hereditary symmetry operator8(u) has a zero Lie derivativeLK8 = 0 with respect
to K ∈ Aq , then we have (e.g., see [14, 17])

[8mK,8nK] = 0 m, n > 0. (1.7)

Therefore each system of evolution equations among the hierarchy

ut = 8nK n > 0 (1.8)

has infinitely many commuting symmetries8mK, m > 0. Such a vector fieldK ∈ Aq may
often be chosen asux , which will be seen later on.

The next section will examine two models of candidates for hereditary symmetry
operators. It will then go on to exhibit concrete examples of the general cases established in
section 3. Finally, section 4 will provide us with a summary and some concluding remarks.

2. Extending hereditary symmetry operators

Let us assume that

uk = (u1
k, . . . , u

q

k )
T 16 k 6 N

u = (uT
1, . . . , u

T
N)

T = (u1
1, . . . , u

q

1, . . . , u
1
N, . . . , u

q

N)
T.

Throughout this paper, we need the following condition

8′k(uk) = 8′l(ul) 16 k, l 6 N (2.1)
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for a set of operators8k(uk) : Aq(uk) → Aq(uk), 1 6 k 6 N . This reflects a kind of
linearity property of the operators with respect to the dependent variablesuk, 1 6 k 6 N .
We point out that such sets of operators8k(uk) do exist. Some examples will be given in
the next section.

Let us consider the first form of candidates for hereditary symmetry operators

8(u) =
( N∑
k=1

ckij8k(uk)

)
N×N

(2.2)

where{ckij | i, j, k = 1, 2, . . . , N} is a set of given constants. Apparently we can define a
linear operator

8(u) : Aq(u)× · · · ×Aq(u)︸ ︷︷ ︸
N

→ Aq(u)× · · · ×Aq(u)︸ ︷︷ ︸
N

where a vector function ofAq(u) depends on all the dependent variablesu1, . . . , uN , not
just certain dependent variableuk.

Theorem 2.1. (i) If all 8k(uk) : Aq(uk)→ Aq(uk), 16 k 6 N, are hereditary symmetry
operators satisfying the linearity condition (2.1) and the constantsckij , 1 6 i, j, k 6 N ,
satisfy the following coupled condition

N∑
k=1

ckij c
l
kn =

N∑
k=1

clikc
n
kj =

N∑
k=1

ckinc
l
kj 16 i, j, l, n 6 N (2.3)

then the operator8(u) : ANq(u) → ANq(u) defined by (2.2) is a hereditary symmetry
operator.

(ii) If Lukx8k = 0 for all 8k(uk), 16 k 6 N, thenLux8 = 0.

Proof. We only need to prove that8(u) satisfies the hereditary condition (1.3), because the
proof of the rest of the requirements is obvious. Noting thatAq(u) is composed of column
vector functions, we may assume forK, S ∈ ANq(u) that

K = (KT
1 , . . . , K

T
N)

T S = (ST
1 , . . . , S

T
N)

T Ki, Si ∈ Aq(u) 16 i 6 N
and we often need to write(X)i = Xi, 1 6 i 6 N, when a vector functionX ∈ ANq(u)
itself is complicated. In this way we have

8K = ((8K)T1, . . . , (8K)TN)T (8K)i =
N∑

l,n=1

clin8l(ul)Kn 16 i 6 N

8′(u)[8K] =
( N∑
k=1

ckij8
′
k(uk)

[ N∑
l,n=1

clkn8l(ul)Kn

])
N×N

(8′(u)[8K]S)i =
N∑

j,k,l,n=1

ckij c
l
kn8

′
k(uk)[8l(ul)Kn]Sj 16 i 6 N

(88′(u)[K]S)i =
N∑

j,k,l,n=1

clikc
n
kj8l(ul)8

′
n(un)[Kn]Sj 16 i 6 N.

Therefore by the linearity condition (2.1), we can obtain

(8′(u)[8K]S −8′(u)[8S]K −8{8′(u)[K]S −8′(u)[S]K})i

=
N∑

j,l,n=1

f (i, j, l, n){8′l(ul)[8l(ul)Kn]Sj −8′l(ul)[8l(ul)Sj ]Kn

−8l(ul){8′l(ul)[Kn]Sj −8′l(ul)[Sj ]Kn}} 16 i, j, n, l 6 N (2.4)
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wheref (i, j, l, n) is given by

f (i, j, l, n) :=
N∑
k=1

ckij c
l
kn =

N∑
k=1

clikc
n
kj =

N∑
k=1

ckinc
l
kj =

N∑
k=1

clikc
j

kn 16 i, j, l, n 6 N.

This is well defined owing to (2.3). Actually the last equality above may be obtained by
changing two indicesn, j in the first equality of (2.3). Each term in the right-hand side of
(2.4) is equal to zero because of the hereditary property of8l(ul), 1 6 l 6 N, and thus
8(u) satisfies the hereditary condition (1.3). The proof is completed. �

Let us now consider the second form of candidates for hereditary symmetry operators

8(u) =


0 · · · 0 81(u1)

Eq · · · 0 82(u2)
...

. . .
...

...

0 · · · Eq 8N(uN)

 (2.5)

where the matrixEq is the unit matrix of orderq, i.e.Eq = diag(1, . . . ,1)︸ ︷︷ ︸
q

.

Theorem 2.2. (i) If the operators8k(uk) : Aq(uk) → Aq(uk), 1 6 k 6 N, satisfy the
linearity condition (2.1), then the operator8(u) : ANq(u) → ANq(u) defined by (2.5) is
hereditary if and only if the operators8k(uk), 16 k 6 N, are all hereditary.

(ii) The conditionLux8 = 0 holds if and only if all the conditionsLukx8k = 0, 1 6
k 6 N, hold.

Proof. Similarly noting thatAq(u) is composed of column vector functions, we may make
the same assumption forK, S ∈ ANq(u)

K = (KT
1 , . . . , K

T
N)

T S = (ST
1 , . . . , S

T
N)

T Ki, Si ∈ Aq(u) 16 i 6 N.

Then we can obtain

8′(u)[8K]S =


8′1(u1)[81KN ]SN

8′2(u2)[K1+82KN ]SN
...

8′N(uN)[KN−1+8NKN ]SN



88′(u)[K]S =


818

′
N(uN)[KN ]SN

8′1(u1)[K1]SN +828
′
N(uN)[KN ]SN

...

8′N−1(uN−1)[KN−1]SN +8N8
′
N(uN)[KN ]SN



Lux8 =
 0 · · · 0 8′1(u1)[u1x ] − (∂81−81∂)
...

...
...

0 · · · 0 8′N(uN)[uNx ] − (∂8N −8N∂)

 .
Based upon the above three equalities and the linearity condition (2.1), we can easily obtain
the required results. So the proof is finished. �
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3. Concrete examples

Basic scalar hereditary symmetry operators satisfying the linearity condition (2.1) can be
one of the following two sets

8i(ui) = αi + βi∂2+ γ (∂ui∂−1+ ui) 16 i 6 N (3.1)

8i(ui) = αi∂ + γ (uix∂−1+ ui) 16 i 6 N (3.2)

where∂ = ∂/∂x andαi, βi, γ are arbitrary constants. Matrix hereditary symmetry operators
satisfying the linearity condition (2.1) may be chosen and some of these examples have been
given in [18–21]. Later on we will see two special examples while discussing extension
problems. On the other hand, such sets of hereditary symmetry operators may be generated
directly from the above operators by theorems 2.1 and 2.2 in the previous section or by
perturbation around solutions as in [22, 23]. Note that all the above hereditary symmetry
operators satisfyLuix8i = 0, 1 6 i 6 N . Therefore among the corresponding hierarchy
ut = 8nux, n > 0, each system of evolution equations has infinitely many commuting
symmetries, because we have [8mux,8

nux ] = 0 if 8(u) is hereditary.

3.1. Hereditary symmetry operators of the first form

Example 1. Let us choose

ckij = f (i)g(j)g(k) 16 i, j, k 6 N (3.3)

where f, g may be arbitrary functions. The set of constants{ckij } satisfies the coupled
condition (2.3) and thus the corresponding operator8(u) defined by (2.2) is hereditary
if each8k(uk) is hereditary and the linearity condition (2.1) holds. In particular, upon
choosingf (1) = g(1) = 1, g(2) = 2, f (2) = −3, we have the following special hereditary
symmetry operator

8(u) =
[
81(u1)+ 282(u2) 281(u1)+ 482(u2)

−381(u1)− 682(u2) −681(u1)− 1282(u2)

]
where we require that81(u1) and82(u2) are hereditary and that8′1(u1) = 8′2(u2). The
second row of this operator is obtained by multiplying the first row by a constant−3 and
so the operator is trivial. As the result of the same fact, all hereditary symmetry operators
resulted from (3.3) are trivial.

Let us now choose

ckij = δkl l = i + j − p (modN) (3.4)

where 16 p 6 N is fixed andδkl denotes the Kronecker symbol again. The corresponding
operator defined by (2.2) becomes

8(u) =


82−p(u2−p) 81−p(u1−p) · · · 8N−p+1(uN−p+1)

83−p(u3−p) 82−p(u2−p) · · · 8N−p+2(uN−p+2)

...
...

. . .
...

8N−p+1(uN−p+1) 8N−p+2(uN−p+2) · · · 82N−p(u2N−p)

 (3.5)

where we need to use8i(ui) = 8j(uj ) if i = j (modN) to determine the operators
involved, for example,82−p(u2−p) = 8N(uN) whenp = 2.
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It can be proved that the coupled condition (2.3) requiresN = 2. Thus, among the
above operators, we have only two candidates of hereditary symmetry operators satisfying
(2.3)

8(u) =
[
81(u1) 82(u2)

82(u2) 81(u1)

]
8(u) =

[
82(u2) 81(u1)

81(u1) 82(u2)

]
u =

[
u1

u2

]
. (3.6)

Note that hereu1 andu2 may be vector functions. These two operators are symmetric and
thus they can be diagonalizable. Actually they can be diagonalized by a linear transformation
of the potentialsu1 andu2. Therefore, they are also trivial. What we show above is that
there is no interesting hereditary symmetry operator among the operators defined by (3.5).

Example 2. Let us choose

ckij = δkl l = i − j + p (modN) (3.7)

where 16 p 6 N is also fixed andδkl still denotes the Kronecker symbol. In this case, we
have
N∑
k=1

ckij c
l
kn =

N∑
k=1

clikc
n
kj =

N∑
k=1

ckinc
l
kj =

{
1 wheni − j − n− l + 2p = 0 (modN)

0 otherwise

which implies that the coupled condition (2.3) automatically holds. Thus we have a set of
candidates for hereditary symmetry operators

8(u) =

8p(up) 8p−1(up−1) · · · 81(u1) 8N(uN) · · · 8p+1(up+1)

8p+1(up+1) 8p(up)
. . .

. . . 81(u1)
. . .

...
...

. . .
. . .

. . .
. . .

. . . 8N(uN)

8N(uN)
. . .

. . .
. . .

. . . 81(u1)

81(u1)
. . .

. . .
. . .

. . .
...

...
. . . 8N(uN)

. . . 8p(up) 8p−1(up−1)

8p−1(up−1) · · · 81(u1) 8N(uN) · · · 8p+1(up+1) 8p(up)


(3.8)

where we also need to use8i(ui) = 8j(uj ) if i = j (modN) to determine the operators
involved. In particular, we can obtain a candidate of hereditary symmetry operators

8(u) =


81(u1) 8N(uN) · · · 82(u2)

82(u2) 81(u1)
. . .

...
...

...
. . . 8N(uN)

8N(uN) 8N−1(uN−1) · · · 81(u1)

 . (3.9)

TheN = 3 case of the above operator with the scalar operators

8i(ui) = βi∂2+ (∂ui∂−1+ ui) 16 i 6 3

gives a hierarchy of nonlinear systemsut = (8(u))nux, n > 1, among which the first
nonlinear system reads as{

u1t = β1u1xxx + β3u2xxx + β2u3xxx + 3u1u1x + 3(u2u3)x
u2t = β2u1xxx + β1u2xxx + β3u3xxx + 3u3u3x + 3(u1u2)x
u3t = β3u1xxx + β2u2xxx + β1u3xxx + 3u2u2x + 3(u1u3)x.

(3.10)
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This system is not symmetric with respect tou1, u2, u3, and generally it cannot be separated
under a real linear transformation of the potentialsu1, u2, u3. One of the reasons is that the
matrix

A =
[
β1 β3 β2

β2 β1 β3

β3 β2 β1

]
cannot always be diagonalized for all values ofβ1, β2, β3. Whenu1 = u2 = u3, the system
is reduced to the KdV equation up to a constant coefficient. It also provides an example of
the general systems discussed by Gürses and Karasu [24].

Example 3. We choose

ckij = δi−j,k−p (3.11)

wherep is an integer andδkl denotes the Kronecker symbol. For two cases of 2−N 6 p 6 1
andN 6 p 6 2N − 1, the coupled condition (2.3) can be satisfied, because we have

N∑
k=1

ckij c
l
kn =

N∑
k=1

clikc
n
kj =

N∑
k=1

ckinc
l
kj =

{
1 wheni − j − n− l + 2p = 0

0 otherwise.

We should note in proving the above equality that we have

16 i − j + p = n+ l − p 6 N 16 i − l + p = n+ j − p 6 N
16 i − n+ p = j + l − p 6 N

when i − j − n − l + 2p = 0. However, for the case of 1< p < N , upon choosing
i = n = N , j = p + 1, l = p − 1, we have

N∑
k=1

ckij c
l
kn = 1

N∑
k=1

clikc
n
kj = 0

and thus the coupled condition (2.3) cannot be satisfied.
Note that whenp < 2−N or p > 2N−1, the resulting operators are all zero operators.

Therefore, we can obtain only two sets of candidates for hereditary symmetry operators

8(u) =


8p(up) 0

8p+1(up+1)
. . .

...
. . .

. . .

8p+N−1(up+N−1) · · · 8p+1(up+1) 8p(up)

 2−N 6 p 6 1 (3.12)

8(u) =


8p(up) 8p−1(up−1) · · · 8p−N+1(up−N+1)

. . .
. . .

...
. . . 8p−1(up−1)

0 8p(up)

 N 6 p 6 2N − 1 (3.13)

where we accept that8i(ui) = 0 if i 6 0 or i > N + 1. These two sets of operators can
be linked by a transformation(u1, u2, . . . , uN)↔ (uN, uN−1, . . . , u1).

When we take

8i(ui) = αi∂2+ 2(∂ui∂
−1+ ui) 16 i 6 N

whereαi , 1 6 i 6 N , are arbitrary constants, as basic hereditary symmetry operators, we
obtainN hierarchies of nonlinear systems of KdV type starting from the operators in (3.12).
A special choice withα1 = 1, αi = 0, 2 6 i 6 N , andp = 1 leads to the perturbation
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systems of the KdV equation generated from perturbation around solutions in [22]. Another
special choice withN = 2 andp = 1 leads to the following system{

u1t = α1u1xxx + 6u1u1x

u2t = α2u1xxx + α1u2xxx + 6(u1u2)x.
(3.14)

We can also choose a pair of hereditary symmetry operators in [25]

81(u1) =
[

u1
1x∂
−1+ 2u1

1 u2
1+ α∂

u2
1x∂
−1+ u2

1− α∂ 0

]
82(u2) =

[
u1

2x∂
−1+ 2u1

2 u2
2+ β∂

u2
2x∂
−1+ u2

2− β∂ 0

]
(3.15)

as basic hereditary symmetry operators withu1 = (u1
1, u

2
1)

T and u2 = (u1
2, u

2
2)

T and two
arbitrary constantsα andβ. Then we can obtain a 4×4 matrix hereditary symmetry operator

8(u) =


u1x∂

−1+ 2u1 u2+ α∂ 0 0
u2x∂

−1+ u2− α∂ 0 0 0
u3x∂

−1+ 2u3 u4+ β∂ u1x∂
−1+ 2u1 u2+ α∂

u4x∂
−1+ u4− β∂ 0 u2x∂

−1+ u2− α∂ 0

 u =


u1

u2

u3

u4


(3.16)

with two arbitrary constantsα and β. Note that we rename the dependent variables
u1

1, u
2
1, u

1
2, u

2
2 as u1, u2, u3, u4, respectively. The first nonlinear system in the hierarchy

ut = (8(u))nux , n > 1, is the following
u1t = αu2xx + 3u1u1x + u2u2x

u2t = −αu1xx + (u1u2)x
u3t = βu2xx + αu4xx + 3(u1u3)x + (u2u4)x
u4t = −βu1xx − αu3xx + (u1u4)x + (u2u3)x.

(3.17)

This is of different type from that discussed in [26] because of the terms of the second
derivatives of potentials.

3.2. Hereditary symmetry operators of the second form

Example 4. Let 8(u) be defined by (2.5). The first non-trivial candidate of integrable
systems among the hierarchyut = (8(u))nux , n > 0, reads as

ut =


u1

u2
...

uN


t

=


81(u1)uNx

u1x +82(u2)uNx
...

uN−1,x +8N(uN)uNx

 . (3.18)

If we choose the basic scalar hereditary symmetry operators as follows

8i(ui) = − 1
4∂

2+ (∂ui∂−1+ ui) 16 i 6 N
then the corresponding hereditary symmetry operator8(u) determined by (2.5) becomes

8(u) =


0 · · · 0 − 1

4∂
2+ (∂u1∂

−1+ u1)

1 · · · 0 − 1
4∂

2+ (∂u2∂
−1+ u2)

...
. . .

...
...

0 · · · 1 − 1
4∂

2+ (∂uN∂−1+ uN)

 . (3.19)

This generates the coupled KdV systems [18, 27].
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If we choose the basic scalar hereditary symmetry operators defined by (3.2), then
the corresponding hereditary symmetry operator contains all hereditary symmetry operators
appearing in [19–21]. A special example gives a hereditary symmetry operator

8(u) =


0 0 0 0 α1∂ + u1x∂

−1+ u1

1 0 0 0 α2∂ + u2x∂
−1+ u2

0 1 0 0 α3∂ + u3x∂
−1+ u3

0 0 1 0 α4∂ + u4x∂
−1+ u4

0 0 0 1 α5∂ + u5x∂
−1+ u5

 u =


u1

u2

u3

u4

u5

 (3.20)

and a nonlinear system
u1t = α1u5xx + (u1u5)x
u2t = u1x + α2u5xx + (u2u5)x
u3t = u2x + α3u5xx + (u3u5)x
u4t = u3x + α4u5xx + (u4u5)x
u5t = u4x + α5u5xx + 2u5u5x

(3.21)

with five arbitrary constantsαi, 16 i 6 5.

Example 5. Let us choose another pair of 2× 2 matrix operators

81(u1) =
[

0 β1∂ + γ (u1
1x∂
−1+ u1

1)

α1 β2∂ + γ (u2
1x∂
−1+ u2

1)

]
82(u2) =

[
0 β3∂ + γ (u1

2x∂
−1+ u1

2)

α2 β4∂ + γ (u2
2x∂
−1+ u2

2)

]
as basic hereditary symmetry operators withu1 = (u1

1, u
2
1)

T andu2 = (u1
2, u

2
2)

T. Then by
theorem 2.2, we obtain a 4× 4 matrix hereditary symmetry operator

8(u) =


0 0 0 β1∂ + γ (u1x∂

−1+ u1)

0 0 α1 β2∂ + γ (u2x∂
−1+ u2)

1 0 0 β3∂ + γ (u3x∂
−1+ u3)

0 1 α2 β4∂ + γ (u4x∂
−1+ u4)

 u =


u1

u2

u3

u4

 (3.22)

whereαi, βi, γ are arbitrary constants and we rename the dependent variablesu1
1, u

2
1, u

1
2, u

2
2

asu1, u2, u3, u4, respectively. The first nonlinear system from the corresponding hierarchy
is the following

u1t = β1u4xx + γ (u1u4)x
u2t = α1u3x + β2u4xx + γ (u2u4)x
u3t = u1x + β3u4xx + γ (u3u4)x
u4t = u2x + α2u3x + β4u4xx + 2γ u4u4x.

(3.23)

This system is reduced to the Burgers equation up to a constant coefficient, if we make a
special choice

u1 = u2 = α1 = α2 = β1 = β2 = 0 u3 = u4 β3 = β4.

Let us next choose the following three 2× 2 matrix operators in [25]

8i(ui) =
[
u2
i + αi∂ u1

ix∂
−1+ 2u1

i

0 u2
ix∂
−1+ u2

i − αi∂
]

16 i 6 3 (3.24)

as basic hereditary symmetry operators withui = (u1
i , u

2
i )

T, 16 i 6 3. It is quite interesting
to observe that the above hereditary symmetry operators can be obtained by interchanging
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two columns of the hereditary symmetry operators in (3.15). Through theorem 2.2, we
obtain a 6× 6 matrix hereditary symmetry operator

8(u) =


0 0 0 0 u2+ α1∂ u1x∂

−1+ 2u1

0 0 0 0 0 u2x∂
−1+ u2− α1∂

1 0 0 0 u4+ α2∂ u3x∂
−1+ 2u3

0 1 0 0 0 u4x∂
−1+ u4− α2∂

0 0 1 0 u6+ α3∂ u5x∂
−1+ 2u5

0 0 0 1 0 u6x∂
−1+ u6− α3∂

 u =


u1

u2

u3

u4

u5

u6

 (3.25)

where αi, 1 6 i 6 3, are arbitrary constants and we rename the dependent variables
u1

1, u
2
1, u

1
2, u

2
2, u

1
3, u

2
3 asu1, u2, u3, u4, u5, u6, respectively. The first nonlinear system of the

corresponding hierarchy reads as

u1t = α1u5xx + u2u5x + (u1u6)x + u1u6x

u2t = −α1u6xx + (u2u6)x
u3t = u1x + α2u5xx + u4u5x + (u3u6)x + u3u6x

u4t = u2x − α2u6xx + (u4u6)x
u5t = u3x + α3u5xx + 2(u5u6)x
u6t = u4x − α3u6xx + 2u6u6x.

(3.26)

This is another different example from the systems discussed by Svinolupov in [26].

4. Conclusions and remarks

Two models of candidates for hereditary symmetry operators are analysed and some possible
basic hereditary symmetry operators are also given. Therefore, according to the conditions
in theorems 2.1 and 2.2, many concrete nonlinear systems of evolution equations possessing
infinitely many symmetries may be generated from various hereditary symmetry operators
having a zero Lie derivative with respect toux . Some particular cases are carefully
discussed, along with several corresponding nonlinear systems.

Our results provide a direct way to extend hereditary symmetry operators. New resulting
hereditary symmetry operators, for example the hereditary symmetry operators shown in
(3.16), (3.22) and (3.25), can also be chosen as basic ones satisfying the linearity condition
(2.1), and then more complicated hereditary symmetry operators can be generated by our
idea of construction. Note thatx may be a vector and no condition has been imposed on
the spatial dimension while examining two forms of candidates for hereditary symmetry
operators. Therefore, the idea is also valid for the case of high spatial dimensions, which
will be reported elsewhere. On the other hand, we hope that there will appear more concrete
examples satisfying (2.3) and more concrete models of hereditary symmetry operators.

It is worth pointing out that the coupled condition (2.3) is only sufficient but not
necessary. We may have counterexamples. For example, a counterexample can be the
following

8(u) =
[

81(u1) 0
82(u2)+ a81(u1) 81(u1)

]
u =

[
u1

u2

]
(4.1)

8i(ui) = δi1∂2+ 2(∂ui∂
−1+ ui) i = 1, 2 (4.2)

with an arbitrary non-zero constanta. In fact, for this operator8(u) we have

(c1
ij ) =

[
1 0
a 1

]
(c2
ij ) =

[
0 0
1 0

]
.
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If we choosei = l = n = 1, j = 2, then we obtain
2∑
k=1

ckij c
l
kn = 0

2∑
k=1

clikc
n
kj = a

and thus the first equality in the coupled condition (2.3) is not satisfied. But the operator
8(u) defined by (4.1) and (4.2) is hereditary, which may be directly proved.

The coupled condition (2.3) may also be viewed as a condition on a finite-dimensional
algebra with a basise1, e2, . . . , eN and an operation

ei ∗ ej =
N∑
k=1

ckij ek 16 i, j 6 N. (4.3)

However, we do not yet know much about such algebras.
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